2.2 The Limit of a Function

In this section we will discuss the definition of a limit and analyze how limit arise when using numerical and graphical methods to compute them.

Intuitive Definition of a Limit: Suppose $f(x)$ is defined when x I near the number a.
Then we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

and we say "the limit of $f(x)$ as x approaches a equals L "
We can make the values of $f(x)$ arbitrarily close to L (as close to L as we would like) by restricting x to be sufficiently close to a (on either side of a but not equal to a).

In other words, the value of $f(x)$ tends to get closer and closer to the number L as x gets closer and closer to the number a (from either side of a) but $x \neq a$.

Sometimes this is also written as $\boldsymbol{f}(\boldsymbol{x}) \rightarrow \boldsymbol{L} \boldsymbol{a s} \boldsymbol{x} \rightarrow \boldsymbol{a}$
Note: The phrase "but $x \neq a$ " in the definition of the limit. This means that in finding the limit of $f(x)$ as x approaches a, we never consider $x=a$. As a matter of fact, $f(x)$ need not even be defined when $x=a$. The only thing that matters is how f is defined near a.

Example: Find the value of $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}$. Notice that the function $\mathrm{f}(\mathrm{x})=\frac{x-3}{x^{2}-9}$ is not defined when $\mathrm{x}=3$, but that doesn't matter because the definition of a limit only considers values of x that are close to a but not equal to a. Because of this reason we can analyze what is happening to the left and right of $x=3$ with a table.

$\boldsymbol{x}<\mathbf{3}$	$\mathrm{f}(\mathrm{x})$
2.5	0.18182
2.75	0.17391
2.9	0.16949
2.99	0.16694
2.999	0.16669
2.9999	0.16667

$\boldsymbol{x}>\mathbf{3}$	$\mathbf{f (x)}$
3.5	0.15385
3.25	0.16000
3.1	0.16393
3.01	0.16639
3.001	0.16664
3.0001	0.16666

(Notice that x is getting very, very close to 3 without actually equaling 3.)
Based on the tables above, we can guess that $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}$ would be somewhere between 0.16667 and 0.16666. In fact, if you continue choosing values of x to get closer and closer to 3 , then $f(x)$ gets more $6 s$
in the decimal (If $x=2.999999999 \cdots$, then $f(x)=1.666666666 \cdots$, which equals $\frac{1}{6}$. So we can say

$$
\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-9}=\frac{1}{6}
$$

Now let's consider a more complicated example.
Example: Find the value of $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}$ Notice that the function $\mathrm{f}(\mathrm{x})$ is not defined at $\mathrm{x}=0$ (it actually can't be simplified to one which is defined at $x=0$), but this doesn't matter because the definition of $\lim _{x \rightarrow a} \mathrm{f}(\mathrm{x})$ says that we can consider values of x that are close to but not equal to a. Again, we need to make a set of tables to analyze what is happening to the value of the function as we approach $x=0$ from both the left and right sides of zero.

$\boldsymbol{x}<\mathbf{0}$	$\boldsymbol{f}(\boldsymbol{x})$
-1	0.8647
-.5	1.2642
-.1	1.8127
-.01	1.9801
-.001	1.9980
-.0001	1.9998

$\boldsymbol{x}>\mathbf{0}$	$\boldsymbol{f}(\boldsymbol{x})$
1	6.3891
.5	3.4366
.1	2.2140
.01	2.0201
.001	2.0020
.0001	2.0002

Based on the tables, we can guess that $\lim _{\boldsymbol{x} \rightarrow \mathbf{0}} \frac{e^{2 x}-\mathbf{1}}{\boldsymbol{x}}=\mathbf{2}$
Although the tables suggest that the limit of the first example is 0.1667 , it by no means establishes that fact conclusively. Using a table can only suggest a value for the limit. Let's look at another example.

Example: Find the value of $\lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right)$ Notice that the function $f(x)=\sin \left(\frac{\pi}{x}\right)$ is undefined at $\mathrm{x}=0$. Let's make tables approaching $\mathrm{x}=0$ from the left and the right.

$\boldsymbol{x}<\mathbf{0}$	$\boldsymbol{f}(\boldsymbol{x})$
-1	0
-.5	0
-.1	0
-.01	0
-.001	0

$\boldsymbol{x}>\mathbf{0}$	$\boldsymbol{f}(\boldsymbol{x})$
1	0
.5	0
.1	0
.01	0
.001	0

We might guess that the $\lim _{\boldsymbol{x} \rightarrow \mathbf{0}} \boldsymbol{\operatorname { s i n }}\left(\frac{\pi}{x}\right)=0$ but this is not true. Upon closer examination of this function we can see that the value of $f(x)$ is oscillating between -1 and 1 . The closer x gets to 0 , the faster the function oscillates. No matter how close we get to zero, the function will continue to oscillate between -1 and 1 therefore a limit of this function as x approaches zero does not approach a single value, so the limit does not exist.

Now, let's consider one-sided limits.

Definition of One-sided Limits:

We write $\lim _{x \rightarrow a^{-}} \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{L}$ and say that the "left-hand" or "left-sided" limit of $\mathrm{f}(\mathrm{x})$ as x approaches a from the left side (or negative side) of a is equal to L. We can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close to a with x less than a.

Similarly, if we require that x be greater than a, we get the "right-hand" or "right-sided" limit of $f(x)$ as x approaches a from the right side (or positive side) of $\mathrm{a}, \mathrm{f}(\mathrm{x})$ approaches L . We write this as

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

Below is a graphical view of what the definition means.

$$
\lim _{x=a^{-}} f(x)
$$

$$
\lim _{x_{1} \rightarrow a^{+}} f(x)
$$

Now by comparing the first definition given in this section with thee two 0ne-sided limit definitions, we get the following:

$$
\lim _{x \rightarrow a} f(x)=L \text { if and only if } \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L
$$

Notice this is exactly what we did in the previous examples by making tables showing that \mathbf{x} approached \mathbf{a} from the right and left sides of a.

Example: The Heaviside Function H is defined by $\boldsymbol{H}(\boldsymbol{t})=\left\{\begin{array}{ll}\mathbf{0} & \text { if } \boldsymbol{t}<\mathbf{0} \\ \mathbf{1} & \text { if } \boldsymbol{t} \geq \mathbf{0}\end{array}\right\}$. Find $\lim _{x \rightarrow 0} H(t)$.
First let's plot a graph of the function. Notice that this is a piecewise function.

From the graph we can see that as t approaches 0 from the left, the value of $\mathrm{H}(\mathrm{t})$ approaches 0 . But as t approaches 0 from the right, the value of $\mathrm{H}(\mathrm{t})$ approaches 1 . Mathematically we get:

$$
\lim _{t \rightarrow 0^{-}} H(t)=0 \quad \text { and } \quad \lim _{t \rightarrow 0^{+}} H(t)=1
$$

There is no single number that $\mathrm{H}(\mathrm{t})$ approaches as t approaches 0 , therefore; $\lim _{t \rightarrow 0} H(t)$ does not exist. (DNE)

Example: Pg 92 \#4
a.) $\lim _{x \rightarrow 2^{-}} f(x)=3$
b.) $\lim _{x \rightarrow 2^{+}} f(x)=1$
c.) $\lim _{x \rightarrow 2} f(x)=D N E$
d.) $f(2)=3$
e.) $\lim _{x \rightarrow 4} f(x)=4$
f.) $f(4)=D N E$

Infinite Limits

Now we will analyze functions that increase without bound as \mathbf{x} approaches a specific value, \mathbf{a}.
Example: Find $\lim _{x \rightarrow . \mathbf{1}} \frac{\mathbf{1}}{(\boldsymbol{x + 1})^{2}}$ if it exists. Here is a graph of the function.

Notice that this function has a domain of $(-\infty,-1) \cup(-1, \infty)$, which means that this function is not defined at $\mathrm{x}=-1$.

Let's make a table to see what happens as we approach $\mathrm{x}=-1$ from the left and right.

$\boldsymbol{x}<-\mathbf{1}$	$\mathrm{f}(\mathrm{x})$
-2	1
-1.5	4
-1.1	100
-1.01	10,000
-1.001	$1,000,000$

$\boldsymbol{x}>-\mathbf{1}$	$\mathrm{f}(\mathrm{x})$
0	1
-.5	4
-.9	100
-.99	10,000
-.999	$1,000,000$

Notice that as we approach $x=-1$ from both sides, the values of y get very large but do not approach a specific value. For this reason we say that the limit does not exist.
$\lim _{x \rightarrow-1} \frac{1}{(x+1)^{2}}$ Does Not Exist this type of behavior is written as $\lim _{x \rightarrow-1} \frac{1}{(x+1)^{2}}=\infty$
It is very important to understand that this does not mean that the limit exists or that ∞ is somehow a definite number, it is the way we express that the limit does not exist and that the function approaches infinity as x approaches a specific value.

Intuitive Definition of an Infinite Limit: Let f be a function defined on both sides of a, except possibly at a itself. Then -

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

This means that values of f (x 0 can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a.

Definition: Let f be a function defined on both sides of a, except possibly at a itself. Then

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

This means that the values of $f(x)$ can be made arbitrarily small (negatively large) by taking x sufficiently close to a, but not equal to a.

Example: Find $\lim _{x \rightarrow \frac{\pi}{2}} \tan (x)$ if it exists. The graph of $\mathrm{f}(\mathrm{x})=\tan (\mathrm{x})[0, \pi]$ is below.
 Notice that $\lim _{x \rightarrow \frac{\pi^{-}}{2}} \boldsymbol{\operatorname { t a n }}(x)=\infty$ and $\lim _{x \rightarrow \frac{\pi^{+}}{2}} \boldsymbol{\operatorname { t a n }}(x)=$ $-\infty$. Therefore the $\lim _{x \rightarrow \frac{\pi}{2}} \boldsymbol{\operatorname { t a n }}(\boldsymbol{x})$ does not exist.

Furthermore, this example gives us a way to interpret vertical asymptotes using limits.

Definition: The vertical line " $\boldsymbol{x}=\boldsymbol{a}$ " is called a vertical asymptote of the curve $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ if at least one of the following statements is true.
$\lim _{x \rightarrow a} f(x)=\infty$
$\lim _{x \rightarrow a^{-}} f(x)=\infty$
$\lim _{x \rightarrow a^{+}} f(x)=\infty$
$\lim _{x \rightarrow a} f(x)=-\infty$
$\lim _{x \rightarrow a^{-}} f(x)=-\infty$
$\lim _{x \rightarrow a^{+}} f(x)=-\infty$

Example: Find $\lim _{x \rightarrow \pi^{-}} \boldsymbol{\operatorname { c o t }}(\boldsymbol{x})$ The graph of $\mathrm{f}(\mathrm{x})=\cot (\mathrm{x})[-2 \pi, 0]$ is shown below.

Notice that as x approaches $-\pi$ from the left side, $\cot (\mathrm{x})$ approaches $-\infty$, therefore; $\lim _{x \rightarrow-\pi} \cot (x)=-\infty$. The line $x=-\pi$ is a vertical asymptote of $f(x)=\cot (x)$.

