2.2 The Limit of a Function

In this section we will discuss the definition of a limit and analyze how limit arise when using numerical and graphical methods to compute them.

Intuitive Definition of a Limit: Suppose f(x) is defined when x I near the number a.

Then we write

 $\lim_{x\to a} f(x) = L$

and we say "the limit of f(x) as x approaches a equals L"

We can make the values of f(x) arbitrarily close to L (as close to L as we would like) by restricting x to be sufficiently close to **a** (on either side of **a** but not equal to **a**).

In other words, the value of f(x) tends to get closer and closer to the number L as x gets closer and closer to the number a (from either side of a) but $x \neq a$.

Sometimes this is also written as $f(x) \rightarrow L as x \rightarrow a$

Note: The phrase "but $x \neq a$ " in the definition of the limit. This means that in finding the limit of f(x) as x approaches a, we never consider x = a. As a matter of fact, f(x) need not even be defined when x = a. The only thing that matters is how f is defined <u>near</u> a.

Example: Find the value of $\lim_{x\to 3} \frac{x-3}{x^2-9}$. Notice that the function $f(x) = \frac{x-3}{x^2-9}$ is not defined when x = 3, but that doesn't matter because the definition of a limit only considers values of x that are close to **a** but not equal to **a**. Because of this reason we can analyze what is happening to the left and right of x = 3 with a table.

<i>x</i> < 3	f(x)	<i>x</i> > 3	f(x)
2.5	0.18182	3.5	0.15385
2.75	0.17391	3.25	0.16000
2.9	0.16949	3.1	0.16393
2.99	0.16694	3.01	0.16639
2.999	0.16669	3.001	0.16664
2.9999	0.16667	3.0001	0.16666

(Notice that x is getting very, very close to 3 without actually equaling 3.)

Based on the tables above, we can guess that $\lim_{x\to 3} \frac{x-3}{x^2-9}$ would be somewhere between 0.16667 and 0.16666. In fact, if you continue choosing values of x to get closer and closer to 3, then f(x) gets more 6s

in the decimal (If x = 2.9999999999..., then f(x) = 1.6666666666..., which equals $\frac{1}{6}$. So we can say

$$\lim_{x \to 3} \frac{x-3}{x^2-9} = \frac{1}{6}$$

Now let's consider a more complicated example.

Example: Find the value of $\lim_{x\to 0} \frac{e^{2x}-1}{x}$ Notice that the function f(x) is not defined at x = 0 (it actually can't be simplified to one which is defined at x = 0), but this doesn't matter because the definition of $\lim_{x\to a} f(x)$ says that we can consider values of x that are close to but not equal to a. Again, we need to make

a set of tables to analyze what is happening to the value of the function as we approach x = 0 from both the left and right sides of zero.

<i>x</i> < 0	f(x)
-1	0.8647
5	1.2642
1	1.8127
01	1.9801
001	1.9980
0001	1.9998

<i>x</i> > 0	f(x)
) (0)
1	6.3891
.5	3.4366
.1	2.2140
	2.2110
.01	2.0201
.001	2.0020
.0001	2.0002

Based on the tables, we can guess that $\lim_{x\to 0} \frac{e^{2x}-1}{x} = 2$

Although the tables suggest that the limit of the first example is 0.1667, it by no means establishes that fact conclusively. Using a table can only suggest a value for the limit. Let's look at another example.

Example: Find the value of $\lim_{x\to 0} sin\left(\frac{\pi}{x}\right)$ Notice that the function $f(x) = sin\left(\frac{\pi}{x}\right)$ is undefined at x = 0.

Let's make tables approaching x = 0 from the left and the right.

<i>x</i> < 0	f(x)
-1	0
5	0
1	0
01	0
001	0

<i>x</i> > 0	f(x)
1	0
.5	0
.1	0
.01	0
.001	0

We might guess that the $\lim_{x\to 0} sin\left(\frac{\pi}{x}\right) = 0$ but this is not true. Upon closer examination of this function we can see that the value of f(x) is oscillating between -1 and 1. The closer x gets to 0, the faster the function oscillates. No matter how close we get to zero, the function will continue to oscillate between -1 and 1 therefore a limit of this function as x approaches zero does not approach a single value, so the limit does not exist.

Now, let's consider one-sided limits.

Definition of One-sided Limits:

We write $\lim_{x\to a^-} f(x) = L$ and say that the "left-hand" or "left-sided" limit of f(x) as x approaches **a** from the left side (or negative side) of **a** is equal to L. We can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a with x **less than** a.

Similarly, if we require that x be greater than a, we get the "right-hand" or "right-sided" limit of f(x) as x approaches **a** from the right side (or positive side) of **a**, f(x) approaches L. We write this as

$$\lim_{x\to a^+} f(x) = L$$

Below is a graphical view of what the definition means.

Now by comparing the first definition given in this section with thee two One-sided limit definitions, we get the following:

$$\lim_{x \to a} f(x) = L \text{ if and only if } \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L$$

Notice this is exactly what we did in the previous examples by making tables showing that **x** approached **a** from the right and left sides of a.

Example: The Heaviside Function H is defined by $H(t) = \begin{cases} 0 & if \ t < 0 \\ 1 & if \ t \ge 0 \end{cases}$. Find $\lim_{x \to 0} H(t)$.

First let's plot a graph of the function. Notice that this is a piecewise function.

From the graph we can see that as t approaches 0 from the left, the value of H(t) approaches 0. But as t approaches 0 from the right, the value of H(t) approaches 1. Mathematically we get:

 $\lim_{t \to 0^{-}} H(t) = 0$ and $\lim_{t \to 0^{+}} H(t) = 1$

There is no single number that H(t) approaches as t approaches 0, therefore; $\lim_{t\to 0} H(t)$ does not exist. (DNE)

Example: Pg 92 #4

a.)
$$\lim_{x \to 2^{-}} f(x) = 3$$

b.) $\lim_{x \to 2^{+}} f(x) = 1$
c.) $\lim_{x \to 2} f(x) = DNE$
d.) $f(2) = 3$
e.) $\lim_{x \to 4} f(x) = 4$
f.) $f(4) = DNE$

Infinite Limits

Now we will analyze functions that increase without bound as **x** approaches a specific value, **a**.

Example: Find $\lim_{x\to .1} \frac{1}{(x+1)^2}$ if it exists. Here is a graph of the function.

Notice that this function has a domain of $(-\infty, -1) \cup (-1, \infty)$, which means that this function is not defined at x = -1.

Let's make a table to see what happens as we approach x = -1 from the left and right.

				T
<i>x</i> < -1	f(x)	x > -1	f(x)	f(x)
-2	1	0	1	1
-1.5	4	5	4	4
-1.1	100	9	100	100
-1.01	10,000	99	10,000	10,000
-1.001	1,000,000	999	,000,000	1,000,000

Notice that as we approach x = -1 from both sides, the values of y get very large but do not approach a specific value. For this reason we say that the limit does not exist.

$$\lim_{x \to -1} \frac{1}{(x+1)^2} \text{ Does Not Exist this type of behavior is written as } \lim_{x \to -1} \frac{1}{(x+1)^2} = \infty$$

It is very important to understand that this does not mean that the limit exists or that ∞ is somehow a definite number, it is the way we express that the limit does not exist and that the function approaches infinity as x approaches a specific value.

Intuitive Definition of an Infinite Limit: Let f be a function defined on both sides of a, except possibly at a itself. Then –

$$\lim_{x\to a} f(x) = \infty$$

This means that values of $f(x0 \text{ can be made arbitrarily large (as large as we please) by taking x sufficiently close to$ **a**, but not equal to a.

Definition: Let f be a function defined on both sides of a, except possibly at a itself. Then

 $\lim_{x\to a} f(x) = -\infty$

This means that the values of f(x) can be made arbitrarily small (negatively large) by taking x sufficiently close to **a**, but not equal to a.

Example: Find $\lim_{x \to \frac{\pi}{2}} \tan(x)$ *if it exists*. The graph of $f(x) = \tan(x) [0, \pi]$ is below.

Notice that
$$\lim_{x \to \frac{\pi}{2}^{-}} \tan(x) = \infty$$
 and $\lim_{x \to \frac{\pi}{2}^{+}} \tan(x) = -\infty$. Therefore the $\lim_{x \to \frac{\pi}{2}} \tan(x)$ does not exist.

Furthermore, this example gives us a way to interpret vertical asymptotes using limits.

Definition: The vertical line "x = a" is called a vertical asymptote of the curve y = f(x) if at least one of the following statements is true.

 $\lim_{x \to a} f(x) = \infty \qquad \qquad \lim_{x \to a^-} f(x) = \infty$ $\lim_{x\to a^+} f(x) = \infty$ $\lim_{x \to a} f(x) = -\infty \qquad \qquad \lim_{x \to a^-} f(x) = -\infty \qquad \qquad \lim_{x \to a^+} f(x) = -\infty$

Example: Find $\lim_{x\to\pi^-} \cot(x)$ The graph of $f(x) = \cot(x) [-2\pi, 0]$ is shown below.

Notice that as x approaches – π from the left side, cot(x) approaches $-\infty$, therefore; $\lim_{x\to -\pi} \cot(x) = -\infty$. The line $x = -\pi$ is a vertical asymptote of $f(x) = \cot(x)$.